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a b s t r a c t

The paper presents an approach to construction of turbulence models that allows modeling of the fluc-
tuating component in the form of the sum of an infinite number of random quantities. The first part of
the paper deals with the technique of construction of the k-e type model. In the second part of the paper,
construction of the model of transfer of turbulent stresses and heat fluxes is considered. It is shown that
the technique does not depend on the choice of the dissipative variable.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction Test calculations showed that this model allows not only solution of
In [1], the author suggested an approach to construction of tur-
bulence models, which allows modelling of fluctuating compo-
nents in the form of an infinite sum of random quantities. In this
case, turbulence is modeled in the form of an infinite sum of vortex
systems and the turbulence energy as a sum of an infinite number
of energies. Vortex systems were given the names of primary, sec-
ondary, etc. It is assumed that only primary vortices interact with
the mean flow. Each subsequent system arises as a result of the
contact of the previous system with the wall and/or shear. We note
that this theory is confirmed by experimental data.

The k-e-type model of turbulence for calculation of the energy
of primary vortices in the case of boundary-layer flow, which is
developed on the basis of the suggested theory, has the form
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traditional problems but also calculations that are not open to tra-
ditional models.

On the basis of these ideas, in [1], model (3) of the type t2 � et

for calculation of temperature fluctuations produced in the bound-
ary layer by primary vortices was suggested and tested:
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The present paper gives further development of the ideas suggested.
2. Model of transfer of turbulent stresses

2.1. Model of transfer of turbulent stresses without account for the
effect of walls and/or shear

The exact equation of transfer of turbulent stresses is deduced on
the basis of the Navier–Stokes equations. It can be written in the form
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Nomenclature

C1, C2, Ce, Cm constants of the turbulence model
Cf friction coefficient
Cfb ¼ m

0:5U2
b

@U
@yy¼0

stress of frictional forces on the wall

Fm, f0 functions of the turbulence model
k total energy of turbulence
k0, k1, ki components of the turbulence energy
Le dissipative scale, k3/2/e
Nu Nusselt number
Re, Rex Reynolds number, Uex/m
Rey turbulent Reynolds number,

ffiffiffi
k
p

y=m
DT temperature difference, Tw - Te

t temperature fluctuation
U, U instantaneous and mean velocities in the x direction
Ub = (gbDTx)1/2 characteristic velocity of natural convection
u, u0, u1, ui fluctuation components of velocity in the x direction

Greek symbols
d boundary-layer thickness
e dissipation rate k, mð@ui=@xiÞ2

Subscripts
e in a free flow
w on a wall
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uiuj þ DiffturbðuiujÞ þ Pij þ pij � eij

Here Diffturb is the operator of turbulent diffusion transfer, Pij is the
generation, pij is the redistribution due to interaction of fluctuations
of velocity and pressure, eij is the rate of dissipation uiuj.

The values of the generation term are calculated by exact relations:
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Turbulent diffusion, redistribution and dissipation rate must be
modeled.

2.2. Equation of transfer of the rate of dissipation eij

In the case when i – j, the correlation uiuj describes the energy
of interaction of the components of the fluctuating component of
velocity. This energy cannot be transferred via the cascade process
since it originates as a result of interaction of specific fluctuations
at a specific instant of time. In [1] it is shown that in the k-e model
constructed on the basis of the suggested ideas e indicates energy
transfer to the cascade process. Hence it follows that in the case
i – j, eij = 0. We note that the equality eij = 0 follows also from the
isotropy of small-scale turbulent motions.

In the case i = j, we require that the half-sum of the transfer
equations uiui coincided with the equation of k transfer. Hence it
follows the necessity for the equality

P
eii ¼ 2e to be fulfilled.

The known relation eii = 2e/3 satisfies this requirement in full mea-
sure but test calculations show that it is better to abandon its use.

In this model, we decided to use a special equation of transfer
for calculation of dissipative terms eii. This equation is derived from
the Navier–Stokes equations and can be written in the form:
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Here Diffturb is the operator of turbulent diffusion transfer, Peii is the
generation of eij, peii is the redistribution of eij due to interaction of
fluctuations of velocity and pressure, eeii is the rate of dissipation of
eij. All these terms must be modeled.

2.3. Redistribution terms

In this work, the known Rotta [2] relation
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was used to calculate redistribution.
In constructing the equation of eij transfer by the recommenda-

tions of Rodi [3] and by analogy with modeling the equations of u2
i

and e transfer, we combine the relations for generation, redistribu-
tion, and dissipation as a whole and model as follows:
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e
k
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2.4. Turbulent diffusion

Apparently, one of most widely spread models of turbulent dif-
fusion is the gradient model of Daly and Harlow [4]
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In this work, this model was used in a slightly simplified form
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2.5. Account for the effect of the wall and/or shear on the transfer
processes

In the k-e model (1), multiplication of the diffusion terms by the
function f0 is used instead of introduction of additional term into
the model, which compensate diffusion on the wall. In the model
under development, the near-wall interactions are allowed for in
a similar way.

The coefficient of turbulent diffusion CDiff
k
e u2

k in (5) is the
approximation of a quite particular quantity, presumably propor-
tional eddy viscosity. It is clear that approximation is obtained par-
tially on the basis of experimental data (values of uiuj, u2

k , and k),
partially on the basis of a immeasurable quantity e. It is natural
to assume that in constructing the approximation the values of e
were found based on one of traditional models. But, assuming
the process to be equilibrium, in first approximation we can take
that et.m � f0ep.m, where the subscripts t.m and p.m indicate the tra-
ditional and present models, respectively. This is well seen from
Eq. (1) of the k-e model. This fact is allowed for in the model for
the diffusion term
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The model of turbulent diffusion eii is constructed by analogy with
(6) with account for construction of the equation of dissipation
transfer in the k-e model
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According to the theory stated in [1], as a result of interaction with
the wall the energy of turbulence is redistributed over the chain of
vortices (primary vortices, secondary vortices, etc.). This process is
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reflected in the model by multiplication of the generation term by
the function f0. In the model of transfer of turbulent stresses, the
generation and redistribution terms take part simultaneously in
creation of the energy components ui0ui0. By virtue of this, we mul-
tiply their sum by the function f0.

In the case when i – j, the correlation ui0uj0 describes the energy
of interaction of the components of the fluctuating component of
velocity. This energy cannot be transferred via the chain of vortices
(primary vortices, secondary vortices, etc.) since it appears as a re-
sult of interaction of specific fluctuations at a specific instant of
time. Therefore, in this case, the generation and redistribution
terms must not be multiplied by the function f0.

The deformation of flow in directed vicinity to the wall is very
large and thus pressure fluctuations are also large; in the wall re-
gion, the effect of viscous forces remains noticeable, etc. All these
reasons cause the wall suppression of the correlation ui0uj0, which,
in turn, requires introduction of an additional term to the equation.
The simplest way is to describe this suppression as a part of the
generation term, e.g., in the form uPij, where u is some function.
It is obvious that this function must be related to the distance to
the wall. The calculations show that the expression u = 1 � f0 is a
good approximation of it.

2.6. Resultant model of transfer of turbulent stresses

After substitution of all approximations and cancellation, the
model for calculation of turbulent stresses has the form
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The values of the constants are: C2 = 1.45, C1 = 0.98C2, Ca = 2.8,

CDiff = 0.26, and Ce = 1.3.
To perform calculations, model (7) is supplemented by model

(1) of the k-e type.

3. Model of transfer of turbulent heat fluxes

3.1. Model of transfer of turbulent heat fluxes without account for the
effect of walls and/or shear

The exact equation of transfer of the correlation uit can be ob-
tained from the Navier–Stokes equations and the equations of
transfer of thermal energy. It has the form

Duit
Dt
¼ DiffviscðuitÞ þ DiffturbðuitÞ þ Pit þ pit � eir ð8Þ

The following notation is used for the terms: Diffvisc is the operator
of molecular diffusion transfer, Diffturb if the operator of turbulent
diffusion transfer, Pit is the generation, pit is the redistribution, eit

is the rate if dissipation of uit.
The generation is calculated exactly Pit ¼ �uiuj
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2. Assuming that m and a are the quantities of the same order,

for molecular diffusion we can use the relation DiffviscðuitÞ ¼ mþa
2

@2uit
@xj@xj

. All the rest terms must be modeled.

3.2. Redistribution terms

To calculate redistribution we used the Monin relation [5]

pit ¼ �Cat
1
Sit

uit
Here Sit is the time scale. In the case of transfer of correlation uit it is
calculated as follows.

It is obvious that the lifetime of the correlation uit is determined
by the time of simultaneous existence of temperature and kine-
matic fluctuations. By this reason, the time scale Sit must be deter-
mined as Sit = min (Sii, St), where Sii is the time scale of u2

i , and St is
the time scale of t2. But the time scale of temperature fluctuations
cannot be larger than the time scale of kinematic fluctuations. To
guarantee this inequality, the author introduced additional dissi-
pation et�add ¼maxð0:5t2 e

k� et ;0Þ to the equation of t2 transfer. It
follows from this expression that et-add is calculated such that ful-
fillment of the inequality 0:5t2=ðet þ et�addÞ 6 k=e was guaranteed,
i.e., the time scale of temperature fluctuations did not exceed the
time scale of kinematic fluctuations. By this reason, the time scale
was calculated as
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3.3. Turbulent diffusion

The gradient Launder expression [6]
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is often used as the model for turbulent diffusion uit. Here Sit is the
time scale of the process. In the present work, this model was used
in a slightly simplified form
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In this case, the choice of the time scale (9) is taken into account.
3.4. Account for the wall effect on transfer processes

In this approach, it is suggested to take into account the effect of
walls on transfer by introducing a special function to the equa-
tions. By virtue of the consideration formulated when calculating
the time scale, as such function we take the function f0-t of form
(4) used in model (3).

The wall effect is taken into account in Eq. (8) in two terms.
First, as in the case of the equations of transfer of uiuj, to allow

for the near-wall viscous effects we multiply the diffusion terms by
f0-t.

From the considerations given in obtaining the coefficient of
turbulent diffusion in the equations of transfer of ui0uj0, we modify
model (10) by multiplying the coefficient of turbulent diffusion by
f0-t
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Second, as well as in the case of construction of the equation of
transfer of the correlation uiuj(i – j), we assume that deformation
of turbulent vortices in close vicinity to the wall generates suppres-
sion of the correlation uit. As in the equation for uiuj(i – j), we de-
scribe this suppression as a part of the generation term related to
the distance to the wall. This relation we take into account by the
function u. Test calculations show that the expression u = 1 � f0-t

serves as a satisfactory approximation for it.
As is known, in the case of local isotropy the dissipation

eit ¼ ðmþ aÞ@ui
@xj

@t
@xj

is zero, therefore in the present model it is
disregarded.
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Fig. 2. Turbulent flow in a forced boundary layer. Calculation of heat transfer (solid
line) at different Pr numbers.
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3.5. Resultant model of transfer of turbulent heat fluxes

The resultant model for calculation of turbulent heat fluxes has
the form
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k0 is the coefficient of turbulent diffu-

sion in the direction xk.The constants were chosen from the require-
ment of the best coincidence of calculations with the experiments
and literature data. The final values of the constants are:

Ct2 ¼ 1:45; Ct1 ¼ 0:9Ct2; CDiff ¼ 0:26; Cet ¼ 1:3:

The constant Cat depends on the Pr number. The expression
Cat = 2.5 + 0.18Pr0.73 can serve as a reasonable approximation of
the dependence in the range 0.7 6 Pr 6 50.

From obvious consideration, the system of Eq. (3) that describes
the transfer of t2

0 and et0 must be included to the model.

4. Model testing

4.1. Forced flow in the boundary layer

The model was tested by calculations of forced turbulent con-
vection on a flat plate. The calculations were performed from
Re = 4.0�105 to 108. The coincidence with the experimental data
is very good for all parameters. The results of the calculations of
friction and heat transfer on the wall are given in Figs. 1 and 2.

4.2. Natural convection on a vertical surface

Calculation of turbulent convection occurring under the effect
of Archimedes forces relates to one of very complex problems of
turbulent modeling. The available literature data do not allow
one to recommend with sufficient accuracy any models for solu-
tion of the problems of this class. So, in particular, it follows from
the data of systematic analysis [7] of the applicability of the k-e
2E+007 4E+007 6E+007 8E+007 1E+008
Re

1E-003

C
f Given work

C f=0.0592Re-0.2

Fig. 1. Turbulent flow in a forced boundary layer. Calculation of the friction
coefficient.
models to calculation of natural convection that results of calcula-
tion are distinguished by a great scatter in both the values of inte-
gral parameters and the distributions of such parameters as
turbulent energy, eddy viscosity, etc.

The suggested model of transfer of turbulent stresses and tur-
bulent heat fluxes was used to calculate natural convection on a
vertical plate with Tw = const. The calculations were performed
from Gr = 0.8�1010 to 1013.

Fig. 3 gives the results of calculation of friction and heat
transfer.

Since in natural confection the friction coefficient is meaningless,
dimensionless stress of friction forces on the wall Cfb was calculated
instead of it. In the present work, we compared the results of Cfb cal-
culation with the following approximations: (1) Tsuji–Nagano [8],
(Cfb = 2Gr�0.26); (2) Cheesewright–Ierokipiotis [9], (Cfb =
1.386Gr�0.249); and (3) Kirdyashkin [10], (Cfb = 20.4Gr�1/3Pr�1/6).
Calculations of heat transfer were compared with the known
formula Nu = 0.12(Gr Pr)1/3.

Results of the calculations of averaged and fluctuating parame-
ters were tested by comparison with the experimental data of Tsuji
and Nagano [8]. As is seen from Figs. 4 and 5, agreement is quite
satisfactory.
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Fig. 3. Friction and heat transfer in natural convection on a vertical surface.
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4.3. Flow in channels and tubes

4.3.1. Stabilized flow
The idea used in construction of the model for boundary layer

calculation was applied to construction of the model for calcula-
tion of flow in channels and tubes. The sense of adaptation is obvi-
ous. In the case of the boundary-layer flow, a turbulent vortex is
pressed to one wall which is allowed for by the model. In the case
of the channel flow, there are two such walls, therefore the both
walls must taken into account simultaneously. In other words,
the function f0 for calculation of the channel flow is as follows:

f0 ¼ 1� exp �Re1y0
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Here y is the distance from the channel axis and H is the channel
half-width.

For calculation of tube flows, in relations (12) and (13) the dis-
tance from the tube center played the role of y and its radius
played the role of H.

The results of heat transfer calculation within the range
0.72 6 Pr 6 50 in the stabilized tube flow were compared with
three known approximations (see [11])

Nu1 ¼ReDnPr=ð40
ffiffiffi
n

p
ðPr2=3�1Þþ8Þ; Nu2¼ 0:023Re0:8

D Pr0:43;

Nu3 ¼ReDPr
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p
=ð4:24LnðReD

ffiffiffiffiffiffiffiffiffiffiffi
n=16

p
Þþ25Pr2=3þ4:24LnðPrÞ�20:2Þ:

In all cases deviation from one of the formulas did not exceed 3–4%.
Results of the calculations of average and fluctuating parame-

ters demonstrate a very good agreement with the experiments of
different authors. As an illustration, Fig. 6 gives calculations of fluc-
tuating components of velocity. We note that calculations of turbu-
lence produced by secondary vortices were not performed.

4.3.2. Stabilizing section
Development of turbulence in tube and channel flows sharply

differs by internal regularities from the development of turbulence
in a boundary layer. The major difference is that turbulence ap-
pears in tubes and channels not due to the instability of laminar
profile. In particular, the Poiseuille profile in tube flows is always
stable. The main reason of turbulence origination is the presence
of disturbances in the flow. But even if the disturbances provide
transition to the turbulent mode, there is no guarantee that flow
will remain turbulent forever. Upon elapse of a rather large period
of time turbulence can degenerate. The dependence of the process
of turbulence formation on the structure of disturbances is very
complex and has not been adequately studied. Darbyshire and
Mullin [12] and Hof et al. [13] note that experiments in short tubes,
i.e., in tubes with a length of about 100D cannot reproduce the en-
tire picture of turbulence formation. To obtain the whole patter we
require longer tubes and a much larger period of observation.

The process of turbulent flow stabilization in a tube inherently
is the process of the development of disturbances in an incoming
flow. It follows from the said above that we can require full coinci-
dence of the calculated and experimental data only if the structure
of the incoming flow is absolutely known. In the present work, all
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calculations were conducted starting from the rectangular profiles
of average velocity, energy of turbulence, and dissipative scale,
which, most likely, does not correspond to the conditions of the
experiment. We note that the rate of dissipation and dissipative
scale do not refer to the measured parameters of the flow. We con-
sider some results of calculations.

Fig. 7 shows the dynamics of variation of the mean dissipative
scale in channel flow. Here the mean scale was calculated as
Lmid ¼ 1

2H

R H
�H LeðyÞdy. It is well seen from the figure that a flow with

small scales of vortices at the channel inlet is stabilized most
quickly. A minimum length of the stabilizing section is of about
300H. The stabilizing section noticeably increases with an increase
of the scale. If we consider the rectangular profile at the channel
inlet as the stabilized profile plus the disturbance imposed on it,
then the process of stabilization can be treated as the process of
decay of disturbances. The results presented indicate that the
stronger the disturbance the more is the period of its decay. This
conclusion is in good qualitative agreement with the data of
[12,13].

On the other hand, by the data of Comte-Bellot [14] the channel
flow was stabilized on the section 120H, where H is the channel
half-width. The results of calculations show that in the calculations
we restrict ourselves only to this channel length, then we can take
the flow to be stabilized if the dissipative scale of the incoming
flow is more that 0.3H.

The author calculated the friction coefficient in the initial sec-
tion of the tube for dissipative scales of the incoming flow, which
vary within the range from 0.5H to 0.9H. The results were com-
pared with calculations by four known formulas:

n1 ¼ 0:0032þ 0:22Re�0:237
D ; n2 ¼ 1=ð0:78LnðReDÞ þ 1:64Þ;

n3 ¼ 0:3164=Re0:25
D ; 1=

ffiffiffiffiffi
n4

p
¼ 0:87LnðReD

ffiffiffiffiffi
n4

p
Þ � 0:41:

In all cases, results of calculations at X = 120H are in quire reason-
able agreement with calculations by one of the given formulas.
We note that scatter of the friction coefficients calculated by these
formulas turns to be higher than variation of the friction coefficient
depending on the initial scales.

It should also be noted that values of mean fluctuating param-
eters cal also be considered stabilized if we restrict ourselves to the
channel length 120H. As an example we give the results of calcula-
tions of turbulent heat fluxes and turbulent friction (see Fig. 8).
They, within the limit of the experiment, can also be taken
stabilized.
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Fig. 7. Dynamics of variation of a mean dissipative scale in a channel flow.
By virtue of said there arises the question: which dissipative
scale should be taken as initial data in order to obtain calculations
adequate to experimental data. Calculations of pressure, profiles of
average velocity and temperature in tubes and channels show that
the best agreement with the experimental data is obtained at
Le-init � 0.9H.

At the same time we should emphasize that if at noticeable dis-
tances from the channel/tube inlet the effect of the dissipative
scale of the incoming flow on fluctuating characteristics turns to
be weak, then at small distances it must not be neglected no
way. This is demonstrated by calculations given in Fig. 9. The figure
shows the dependence of basic fluctuating parameters of the flow
on the dissipative scale of the incoming flow at a distance X = 5H.
As is well seen, the dependence is very pronounced. Especially
strong is the effect of the dissipative scale on the energy of
turbulence.

4.4. Flow past backward-facing step

Turbulent flow past backward-facing step is a widely used test
problem for estimating the turbulence models. It is known that er-
rors of the standard k-e model with the wall functions in calculat-
ing the coordinate of flow reattachment past the backward-facing
step is of about 20–25%.
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We now present some examples of calculations. So et al. [15]
give results of calculation of turbulent flow past a backward-facing
step, which was experimentally studied by Eaton and Johnston in
[16], by several model of turbulence. In [17], the results of calcula-
tion of flow that was studied by Driver and Seegmiller [18] exper-
imentally are compared with calculations by the models of
Launder and Sharma [19] and Wilcox [20]. The site NPARC Alliance
[21] gives the comparison of the calculations of turbulent flow past
the backward-facing step by three turbulence models of the k-e
type (the authors of the models are not indicated) and by the SST
model [22] with the experimental data of Driver and Seegmiller
[18]. Papageorgakis and Assanis [23] give the calculations of flow
past the backward-facing step, which was studied experimentally
by Kim et al. [24], by the linear and nonlinear models of Yakhot
and Orzsag [25].

Results of the calculation of the point of flow reattachment are
given in Table 1. The table presents the models of the mixing
length type (model 2), k-e-type models using the Boussinesq
hypothesis (models 1, 3, 5, 7, and 8), the model that uses e as a dis-
sipative variable but not uses the Boussinesq hypothesis (model 4),
two models (7) and (8) that use, at least in the wall region, the tur-
bulence frequency x as the dissipative variable, and two models of
the RNG type.

Generally speaking, the results presented in the table are poorly
tractable. For example, declining the Boussinesq hypothesis (calcu-
lation 4) gave a worse result than calculations by the models using
the Boussinesq hypothesis (calculations 1, 5, 7, and 8). The RNG
model with nonlinear terms (calculation 11) shows worse results
than the linear RNG model (calculation (10), etc.

In the author’s opinion this senselessness can be explained as
follows. In Section 4.3.1 we discussed a noticeable dependence of
the calculations of the initial section of flow on the dissipative scale
at the tube/channel inlet. In the case of flow past a backward-fac-
ing step, the conditions behind the step can be treated as calcula-
tion of flow in the channel initial section. It is meant that in the
experiments of Eaton and Johnston [16] and Kim et al. [24], which
were used as a test problem in all calculations except 6–9, the
length of the section in front of expansion is equal to about 2.5–
Fig. 10. Flow past a backward-facing step.

Table 1
Results of calculation of the point of flow reattachment by different models of
turbulence.

No. Model Deviations from the experiment (%)

1 Chien [26] �23
2 Rotta [27] �24
3 Gibson and Younis [28] �36
4 Launder, Reece, and Rodi [29] �36.5
5 Launder and Sharma [19] �16
6 Wilcox [20] +3
7 Standard k-e �15
8 k-e with the variable Cl �11
9 Menter [22] +2.7
10 Linear RNG [25] +9
11 Non-linear RNG [25] +19
3 of the height of the narrow part of the channel. Then it is clear
that the dissipative scale at the inlet can rather strongly change
the results of calculations. At the same time, none of the works
indicate either the dissipative scale or dissipation.

A strange behavior of the RNG models is also explained by a
scale incorrectly specified at the inlet. Most likely, the dissipation
at the channel inlet specified in the calculations is noticeably ele-
vated. In this case, the flow near the lower wall is noticeably lam-
inarized and the reattachment point is shifted away. By increasing
the dissipation we can substantially decrease the coordinate of the
reattachment point. Then, the reattachment point obtained by
the nonlinear model will be closer to the experimental data than
the point found by the linear model.

The success of the Menter model [22], which uses x = k0.5Le, as
the dissipative variable in the near-wall region, and the Wilcox mod-
el [20], which uses x as the dissipative variable within the entire
computational region is not explained by new dissipative variable
only. In these calculations, the problem that was experimentally
studied by Driver and Seegmiller [18] was solved. In contrast to
experimental works of Kim et al. [24] and Eaton and Johnston [16],
where the ratio of the step height to the channel height was 1:3, in
[10] this ratio was 1:9. Thus, the flow in the detachment region be-
comes much closer to the flow unbounded from above. In other
words, the flow, in essence, turns to be a boundary layer incoming
on the step. But in this case, as is shown by author’s calculations,
the dependence of the flow on the initial dissipative scales is less pro-
nounced. Hence we can draw a conclusion that only calculations
6–9, which used for comparison the data of [18], have an objective
characteristic of the properties of models.

Unfortunately, calculation of flow [18] requires computational
power which is not accessible to the author. By virtue of this, in
the present paper, we calculated a turbulent flow past a back-
ward-facing step, which was experimentally studied by Kim et al.
[24]. The sketch of the computational region is given in Fig. 10.

The ratio of the step height to the channel height at the inlet is
1:3; the Reynolds number calculated by the step height and the
mass-mean flow velocity is Re = 44,000.

The independence of the solution on the grid in zone 2 was ver-
ified by calculations on two uniform grids: 120 � 62 and 165 � 80.
The difference in calculations of the reattachment point is of about
2–3%. At the same time, by the data of Thangam and Speziale [30]
the resolution 166 � 73 is sufficient.

The data of Kim et al. [24] are not enough for conducting
calculations adequate to the experiment. The published data do
not allow one to find the level of fluctuations and the dissipative
scale at the setup inlet. Due to this fact, additional studies were
needed before calculations.

It is seen from the conditions at the inlet to zone 1 that at the given
Re number the flow is defined by two parameters—uinlet/Uinlet and
Le-inlet/H, i.e., fluctuations and the dissipative scale at the channel in-
let. Fig. 11 shows the results of calculations of the reattachment
point as a function of uinlet/Uinlet and Le-inlet/H. The experimental reat-
tachment point XReatt/H = 7 is shown by the bold line.
Sketch of the computational domain.
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The results in Fig. 11 are interpreted trivially. As the level of
fluctuations at the inlet decreases the turbulence in the flow de-
creases and the flow approaches, by the characteristics, the laminar
wall jet. In this case, the reattachment point is determined by nat-
ural expansion of the jet and, as a result, is shifted downflow. Since
Le = k3/2/e, the increase of the initial dissipative scales is equivalent
to initial dissipation decrease. As a result, the level of fluctuations
decreases sharply and we obtain a similar picture.

To compare with the experimental data we conducted calcula-
tions of flow with the determining parameters uinlet = 0.06363Uinlet

and Le-inlet = H. These values were found by interpolation of the
data presented in Fig. 11. The calculation coordinate of the reat-
tachment point XReatt = 6.998H. Allowing for the fact that in [24]
XReatt/H = 7 ± 1, we have virtually exact coincidence with the
experiment.

At the same time, the ambiguity of the solution which satisfies
the requirement XReatt/H = 7 clearly follows from Fig. 11. Thus,
there is no much sense in requiring the coincidence of calculation
with the experiment. Moreover, we note that in calculations only
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Fig. 12. Flow past a backward-facing step. Distribution
the equations for primary vortices were used. Hence it follows
the underestimation of the calculated values of u2

0 compared with
the experimental data.

Fig. 12 gives the calculation of the average velocity distribution.
The experimental data are shown by symbols. With account for the
comments given the agreement is rather satisfactory.

5. Versatility of approach

In the present paper, we assume, by analogy with a laminar
flow, that the following physical effect is present in turbulent
flows—an additional turbulent vortex appears in the flow as a re-
sult of the contact between the turbulent vortex and the surface
and/or shear region. The account of this effect in turbulence mod-
eling allows obtaining of very simple and rather universal models
of turbulence. But all models suggested in the present work use the
variable e as the dissipative variable. In this section it is shown that
transfer of the suggested regularities on the models of turbulence
with other dissipative variables allows obtaining of the results of
the same quality. The presented calculations are performed on
the basis of the k-x and k-L models, but, as follows from calcula-
tions, this technique can elementary be transferred to any other
models.

5.1. Technique for constructing turbulence models with arbitrary
dissipative variables

According to Launder [31], the dissipative variable z of any model
of two differential equations can be presented in the form z = knLm,
where k is the turbulence energy and L is the dissipative scale. Hence
it follows that any two dissipative variables z and z1 can be related by
the expression z1 = knzm. In the present paper, this relation is used for
transition from one dissipative variable to another.

We assume that e0 ¼ kn
0zm

0 , where z is a new dissipative variable,
and substitute this expression to the equation of dissipation trans-
fer of model (2). After simple transformations we obtain

Ui
@z0

@xi
¼ f0

@

@xi
De
@z0

@xi
þ z0

k0

C1 � n
m

� �
f0P � C2 � n

m

� �
kn

0zm
0

� 	
þ Add

ð14Þ

Eq. (14), by its structure, principally corresponds to the equation of
dissipation transfer of model (2). The term Add in (14) describes
additional terms arising due to the substitution of the dissipative
variable.
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In particular, e = kx for the k-x model, i.e., n = m = 1. Hence

Ui
@x0

@xi
¼ f0

@

@xi
De
@x0

@xi
þx0

k0
½ðC1 � 1Þf0P � ðC2 � 1Þk0x0� þ Addx:

The term Addx has the form

Addx ¼ 2f 0De
1
k0

@k0

@xi

@x0

@xi
þx0

k0
f0
@

@xi
ðDe � DkÞ

@k0

@xi

For the k-L model e = k3/2/L, i.e., n = 3/2, m = -1. Hence

Ui
@L0

@xi
¼ f0

@

@xi
De
@L0

@xi
þ L0

k0

3
2
� C1

� �
f0P � 3

2
� C2

� �
k3=2

0

L0

" #
þ AddL:

The term ADDL is not used in what follows and therefore is not gi-
ven here.

After discarding additional terms we obtain two models: the
k-x model (15)–(17)

Ui
@k0

@xi
¼ f0

@

@xi
Dk
@k0

@xi
þ f0P � k0x0; ð15Þ

Ui
@x0

@xi
¼ f0

@

@xi
De
@x0

@xi
þx0

k0
ðf0ðC1 � 1ÞP � ðC2 � 1Þk0x0Þ; ð16Þ

mt ¼ CmFmk0=x0; ð17Þ

and the k-L model (18)–(20)

Ui
@k0

@xi
¼ f0

@

@xi
Dk
@k0

@xi
þ f0P � k3=2

0

L0
; ð18Þ

Ui
@L0

@xi
¼ f0

@

@xi
De
@L0

@xi
þ L0

k0
f0

3
2
� C1

� �
P � 3

2
� C2

� �
k3=2

0

L0

 !
; ð19Þ

mt ¼ CmFm

ffiffiffiffiffi
k0

p
L0: ð20Þ

In the original k-x model of Wilcox [20] the dissipative term in the
equation of k transfer is written as Ckx, where C = 0.09 which
allowed one to get rid of the constant Cm = 0.09 in expression (17).
But, as obviously follows from the system (15)–(17), if we introduce
the variable x1 = 0.09x, we can, by changing only the set of con-
stants, remain the previous solution of the system. By this reason,
this constant in the given model is taken to be unity.

5.2. Boundary conditions on the wall

For the k-e model, the boundary condition on the wall were
specified in an ordinary manner y = 0 � U = k = e = 0.

The problem with the boundary condition for x0 on the wall re-
quires additional studies. An analysis of the equations of transfer
(15) and (16) shows that on the wall they can be written as

f0m
@2k0

@y2 ¼ k0x0; ð21Þ

f0m
@2x0

@y2 ¼ ðC2 � 1Þx2
0: ð22Þ

In the near-wall region the values of Rey0 and y/Le0 are small. There-
fore, allowing for the expansion of the exponent into the Taylor ser-
ies, the expression for f0 can be written in the following form

f0 �
Rey0

5:5
2:4y
Le0
¼ 1

5:5

ffiffiffiffiffi
k0

p
y

m
2:4y

e0

k3=2
0

� 0:44
y2e0

k0m
¼ 0:44

y2x0

m

Then Eq. (21) can be written as

0:44y2 @
2k0

@y2 ¼ k0 ð23Þ

Eq. (23) has an exact solution

k0 ¼ C1y
1þ
ffiffiffiffiffi
10:1
p

2 þ C2y
1�
ffiffiffiffiffi
10:1
p

2 � C1y2:088 þ C2y�1:088 ð24Þ
Since kwall = 0, C2 = 0 and we have the solution k0 = C1y2.088 which is in
good agreement with the known solutions and experimental data.

By analogy with (23) we write Eq. (22) in the form

0:44
C2 � 1

y2 @
2x0

@y2 ¼ x0: ð25Þ

Allowing for the fact that in this model C2 = 1.45 and assuming
0.44/0.45 � 1 we find an approximate form of the general solution
of Eq. (25)

x0 ¼ C1yð1þ
ffiffi
5
p
Þ=2 þ C2yð1�

ffiffi
5
p
Þ=2 � C1y1:62 þ C2y�0:62:

We require that the dissipative scale on the wall was zero. This is
quite an obvious requirement since the vortex with zero energy must
have a zero diameter. Allowing for (24) we have that if C2 = 0, then
Le0 ¼

ffiffiffiffiffi
k0

p
=x0 ¼ CLy�0:58 , i.e., Lwall =1. Hence it follows that C2 – 0

and xwall =1. In other words, in the calculations the boundary con-
dition xwall =1 must be approximated, which is rather difficult.
These reasons likely cause the necessity in the k-x model of Wilcox
[20] to specify rather a large value of x on the wall. We note that in
this case we obtain on the wall Le0 ¼

ffiffiffiffiffi
k0

p
=x0 ¼ CLy1:66.

On the other hand, from the considerations of dimensionality
s �x�1, where s is the time scale of turbulence. It is evident that
in turbulence decay, e.g., when approaching the wall, one of the
scales must tend to zero, since in the degenerated turbulence none
of the characteristics can have nonzero finite values. The
calculations show that in the k-e model the turbulence frequency,
i.e., x, tends to zero. The above analysis shows that to meet the
condition Lwall = 0 the k-x model requires the time scale to tend
to zero. As a result, the boundary condition for x on the wall
was selected such that the dissipative scale had minimum corre-
spondence to the dissipative scale that is obtained in the calcula-
tions by the k-e model. The calculations show that in the
boundary layer the value xwall = 500 corresponds more or less to
this condition.

We note one very important fact. It is clear that in the near-wall
region the dominant role is played by viscous diffusion which is
determined by the second derivative in the direction normal to the
wall. Hence it follows that in constructing the difference analogue
of the transfer equation x in the near-wall region, one should, first
of all, take care of the accuracy of reproduction of this derivative.
As has been already mentioned, the boundary condition xwall =1
must be specified in the calculations. We assume that on the wall
x is described by the expression x = C/yn. Requiring the coincidence
of the difference derivative x00y1 ¼ ðx2 � 2x1 þxwallÞ=h2 with the
exact value, we obtain xwall ¼ ðnðnþ 1Þ � 2�n þ 2ÞC=hn. Hence it fol-
lows that in the calculations xwall is not constant but depends on the
grid steps in the direction normal to the wall.

In calculations by the k-L model the boundary condition Lwall = 0
was used on the wall. No problem arose when this condition was
used.

5.3. Results of calculation of boundary-layer flows

It is obvious that calculations of the boundary layer appreciably
depend on the initial conditions. Among the models under consid-
eration the most tested one is the k-e model. At the same time, the
author has not tested the k-x and k-L models within the frame-
work of the given approach. Therefore, in calculations by the k-x
and k-L models the initial conditions were specified as follows.
All calculations were started by the k-e model at Re = 5.0 � 105. If
testing by the k-x and k-L models was assumed, then at
Re = 7.0 � 105 calculation was switched over to the corresponding
model equation with the values found by the k-e model being used
as the initial conditions for L or x.
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At the infinity, the condition xe = 0 was used in the calculations
by the k-x model.

Results of the calculations by the k-x model show one more
difficulty. In calculations by the k-x model, a naked sharp in-
crease of the dissipative scale appears on the outer boundary.
The rise starts behind the boundary layer border, i.e., where
oU/oy = 0, gradually spreads over the entire layer, and appreciably
distorts the results of calculations. Change of boundary conditions
on the outer boundary did not helped in eliminating this
phenomenon.

Probably, Menter [22] implied this very fact when he spoke
about formulation of boundary conditions on the outer boundary.
To improve the situation, in [22] it was suggested to introduce a
correction term, which, on the outer boundary, converts the equa-
tion of x transfer to the equation of e transfer. To do this, an addi-
tional term was introduced to the equation of x transfer, which by
sense was similar to the additional term Addx in Eq. (5). This addi-
tional term was multiplied by the function that is equal to zero on
the wall and to unity on the outer boundary of the layer, so the cor-
rection was fully used only on outer boundary of the flow. We note
that in [22] the correction is introduced not quite correctly. In [22],
it looks like 2remt

1
k
@k
@xi

@x
@xi

. Here the coefficients of diffusion transfer

Dk = m + mt and Dx = m + rxmt are used. Then, since Dk – Dx, a term
x
k

@
@xi
ðDx � DkÞ @k

@xi
, as it follows from the above-given conclusion,

must be present in the correction. At the same time, viscous diffu-
sion is ignored in the correction. It is natural that inside the layer it
can be neglected, but beyond the edge of the boundary layer it may
exert appreciable effect.

In order to transform one equation to another Menter [22] used
a very complex function of k and x. Due to the presence of the
function f0 in the model, the values of x obtained by the Menter
[22] model and the studied model will differ greatly. Therefore, di-
rect use of the suggested transformation function is impossible. At
the same time, the main meaning of this function is in the fact that
it is equal to zero on the wall and to unity on the outer boundary of
the layer. The calculations show that the graph of the function f 8

0

and the graph of the function F1, which was suggested by Menter,
are in good coincidence in the boundary layer.

In what follows, we call the model

Ui
@k0

@xi
¼ f0

@

@xi
ðmþ mtÞ

@k0

@xi
þ f0P � k0x0;

Ui
@x0

@xi
¼ f0

@

@xi
ðmþ mtÞ

@x0

@xi
þx0

k0
½ðC1 � 1Þf0P � ðC2 � 1Þk0x0�

þ f 8
0 2f 0ðmþ mtÞ

1
k0

@k0

@xi

@x0

@xi

� �
:

as the k-x model with the Menter correction. By virtue of the
difficulties mentioned, this model was used in the calculations
of the boundary layer instead of the k-x model suggested by
Wilcox [20].

The calculations presented were performed without any opti-
mization of the models. It should be mentioned that in many cases
the agreement of calculations by the three models turns to be so
good that the graphs virtually merge and are indiscernible.
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Fig. 14. Flow with a positive pressure gradient. Calculation of the friction
coefficient by three turbulence models.
5.3.1. Boundary-layer flow on the flat surface with the zero pressure
gradient and zero turbulence of the outer flow

In these calculations, in the equations of the k-L model the con-
stant CL1 = 1.5-0.9C2 was used, whereas in the k-e model use was
made of the constant C1 = 0.93C2. No other changes were made.
Fig. 13 shows the calculation of the friction coefficient. It is well
seen from the graphs that calculations by the k-e model and the
k-x model with the Menter correction coincide fairly well. A sim-
ilar qualitative agreement between the calculations is observed in
the calculations of all averaged and fluctuating parameters of the
flow. The k-L model gives some difference in the obtained values
of energy and turbulent friction in the outer region.

5.3.2. Boundary layer with a positive pressure gradient
The results of calculation of the friction coefficient are pre-

sented in Fig. 14. They are compared with the experimental data
of Samuel and Joubert [32]. In this case, calculations by the k-e
model and the k-x model with the Menter correction are in good
agreement as well. The k-L model gives some difference in the ob-
tained values of energy and turbulent friction.

5.3.3. Bypass transition in the boundary layer
The technique of calculations is described in [1]. The results of

calculations of the friction coefficient are given in Fig. 15. These re-
sults are compared with the experimental data of T3A and T3B pre-
sented by Roach and Brierly in [33]. We note that coincidence of
the calculations of averaged and turbulent parameters with LES
calculations of Yang and Voke [34] not worse but sometimes better
agreement with the experiment.



1E+004                       1E+005                       1E+006
Re

0.001

0.01
C

f

k-  model

k-L model

k-  model with 
Menter's correction

T3A

T3B

Fig. 15. Bypass transition in the boundary layer. Calculation of the friction
coefficient by three turbulence models.

0           0.2           0.4          0.6          0.8           1
1-y/H

0

0.2

0.4

0.6

0.8

1

-u
v +

k-  model

k-  model with
Menter's correction

Comte-Bellot [14]

k-  model
k-L model

Re=1.2e+5

Fig. 16. Flow in a flat channel. Calculation of turbulent friction by three turbulence
models.

B.P. Golovnya / International Journal of Heat and Mass Transfer 52 (2009) 5229–5240 5239
5.4. Channel flow

Fig. 16 shows the calculations of turbulent friction in stabilized
flow in a flat channel. The results are compared with the experi-
mental data of Comte-Bellot [14]. In this case, the use of the Men-
ter correction does not substantially affect the result.
5.5. Additional notes

It is impossible to make direct comparison of calculations of ellip-
tic flows by the model of transfer of turbulent stresses and heat
fluxes. The reason is that it is not clear how can the model of transfer
of turbulent stresses and heat fluxes be constructed on the basis of
k-x and k-L variables. In the k-e model, the dissipative variable is
the energy transferred to the cascade process. Since k0 ¼ 0:5ðu2

0þ
v2

0 þw2
0Þ, it is quite natural to assume that e0 = 0.5(eu0 + ev0 + ew0).
But this assumption does not cover either the scale of turbulence
or its frequency. It should be noted that this limitation appreciably
narrows the possibilities of further development of the k-x and
k-L models.

6. Conclusions

In the present paper, the model of transfer of turbulent stresses
and heat fluxes is constructed on the basis of the ideas suggested
by the author. The verification of the model shows its high effi-
ciency. At the same time, equations of the model are rather simple
and involve a minimum number of corrections. One, nevertheless,
must pay attention to the fact that even in the simplest case of
solution of parabolized problems the model has 12 differential
equations. This fact somewhat diminishes exploitation advantages
of the model.
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